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Uncertainties in the retrieval of the remote sensing reflectance, Rrs, from Ocean Color (OC)
satellite sensors have a strong impact on the performance of algorithms for the estimation
of chlorophyll-a, mineral concentrations, and inherent optical properties (IOPs). The
uncertainties are highest in the blue bands. The total radiance measured at the top of
the atmosphere captures the instantaneous state of the atmosphere-ocean system: the in-
water conditions, sky and Sun glint reflected from the wind-roughened ocean surface, as
well as light scattered from molecules and aerosols in the atmosphere. Each of these
components has associated uncertainties, and when combined with the additional
uncertainties from the instrument noise and the atmospheric correction process, they
contribute to the total uncertainty budget for the retrieved Rrs. We analyzed the
contribution of each component uncertainties to the total Rrs uncertainties in SNPP-
VIIRS level 2 products, taking advantage of the spectral differences between the
components. We examined multiple scenes in the open ocean and coastal waters at
spatial resolutions ranging from 2250 to 5250m by comparing the retrieved Rrs to in situ
measurements made at several AERONET-OC sites and at the MOBY site. It was shown
that uncertainties associated with the molecular (Rayleigh) scattering play the most
significant role, while the contributions of other components are usually smaller.
Uncertainties in Rayleigh scattering are primarily attributed to the variability of Rayleigh
optical thickness (ROT) with a standard deviation of approximately 1.5% of ROT, which
can largely explain the frequency of negative Rrs retrievals as observed using the current
standard atmospheric correction process employed by NASA. Variability of the sky light
reflected from the ocean surface in some conditions also contributed to uncertainties in the
blue; water variability proportional to Rrs had a very pronounced peak in the green at
coastal sites.
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INTRODUCTION

Ocean Color (OC) is indicative of ocean health and biochemistry,
and for that reason is listed as an essential climate variable (ECV)
(IOCCG, 2008). The color of a water body is determined by
scattering and absorption of pure water and its natural
constituents, such as phytoplankton, non-algal particles, and
colored dissolved organic matter (CDOM) (Mobley, 1994).
Some phytoplankton species form harmful algal blooms
(HABs), which can be toxic and affect human and marine life,
and more generally the health of the ecosystem, fishing industry,
and recreation activities (IOCCG, 2021). Typically, less than 10
percent of the top of the atmosphere (TOA) radiance is due to the
water signal at sea level (Gordon and Morel, 1983), with the
remainder originating from scattering processes in the
atmosphere and reflections of the Sun and sky on the wave-
roughened water surface. It is paramount to accurately estimate
radiances at the surface level from the ones at the TOA, as
uncertainties propagate into the retrieval of water parameters,
characteristics of in-water particulates, concentrations of
chlorophyll-a, and detection of algal blooms (IOCCG, 2010;
IOCCG, 2019).

Atmospheric correction uncertainties stem at least partially
from the estimation of aerosol models, and air–water interface
effects due to sky and Sun light reflections at the wind-roughened
air–water interface (Gordon andWang, 1992; Gordon andWang,
1994; Frouin et al., 1996; Wang and Bailey, 2001; Ahmad et al.,
2010; Frouin et al., 2019). Atmospheric correction uncertainties
often have a stronger impact on retrievals in coastal waters with
low water reflectance values in the blue bands (Carrizo et al.,
2019; Groetsch et al., 2020; Wei et al., 2020). Currently, high
uncertainties in the blue reflectance observations are widely
acknowledged (IOCCG, 2019; Wei et al., 2020; Li et al., 2019;
Herrera-Estrella et al., 2020). However, little is known about the
specific dependencies of uncertainties concerning their spectral
and scaling behavior in various water areas, and their dependence
on meteorological conditions.

The spectra of aerosol radiances in coastal areas are
significantly affected by the presence of absorbing aerosols
(Gordon et al., 1997; Ransibrahmanakul and Stumpf, 2006; Shi
and Wang, 2007). Atmospheric correction processing schemes
for the current satellite sensors do not account for this effect due
to a lack of information about aerosol parameters, and it is
assumed that this leads to negative values of Rrs in blue bands
(Frouin et al., 2019). This makes the estimation of chlorophyll
concentration and water parameters inaccurate in such waters.
Several partial solutions to this problem are found in the existing
literature and include more complex processing in the
atmospheric correction (Gordon et al., 1997; Oo et al., 2008),
removal of the uncertainty as a power law-like “artifact” with
exponent -6 (Ransibrahmanakul and Stumpf, 2006), neural
network approaches (Fan et al., 2021), utilization of
atmospheric correction algorithms based on the fitting of
Rayleigh spectra (Steinmetz et al., 2011; Zhang et al., 2019),
and simply avoiding blue bands in algorithms for the retrieval
of water parameters (El-Habashi et al., 2019; Gilerson et al.,
2021). The upcoming NASA PACE mission (Werdell et al., 2019)

will have the hyperspectral Ocean Color Instrument (OCI) and
two polarimeters on board, which are expected to provide
broader information on aerosol parameters. With these,
atmospheric correction processing is expected to be
significantly improved. However, for the current sensors, it is
important to have amore accurate understanding of the impact of
absorbing aerosols on Rrs retrievals.

There are differences in the terminology regarding
“uncertainties.” In the Guide to Uncertainty in Measurement
(Sayer et al., 2020), uncertainty is defined as an expression of the
dispersion of the measurand (in our case, Rrs retrieved from
satellite observations), and it is often represented as one standard
deviation around the retrieved value. In our case, the standard
deviation would represent Rrs uncertainties due to spatial
variability (Herrera-Estrella et al., 2021), where the difference
between the mean Rrs value and “true” Rrs value is up to 4–5 times
greater than one standard deviation. In this work, uncertainties of
Rrs will be described as the root mean square difference (RMSD)
between the mean Rrs value determined from satellite data and in
situ Rrs, which is considered as a “true” value, similar to the
approach in IOCCG (2019).

The estimation of the uncertainties can be carried out by the
comparison of the parameters determined from the satellite
imagery with the “true” values. These comparisons can be
made in clear waters, where all the water parameters can be
connected to the concentration of chlorophyll-a, [Chl] (Hu et al.,
2013). Another approach is to compare data from satellite sensors
with field measurements from offshore platforms, autonomous
systems such as the AERONET-OC network (Zibordi et al., 2009,
21), buoys like Marine Optical BuoY (MOBY) (Clark et al., 1997),
and from ships (Moore et al., 2015). Specifically, the (Moore et al.,
2015) uncertainties in Rrs were estimated for seven optical water
types (OWT) using data from the SeaBASS optical database
(Werdell et al., 2003) for the MOBY site, the BOUSSOLE
mooring site in the Mediterranean Sea (Antoine et al., 2008),
and AERONET-OC sites within 5 × 5 pixel boxes, plus/minus 3 h
differences. It was found that Rrs uncertainties are generally the
highest in the blue part of the spectrum in both clear and coastal
waters.

In yet another approach, using Monte Carlo (MC) simulations
for Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
observations (Franz et al., 2016), the retrieval process for Rrs

was repeated 1000 times, and uncertainties in Rrs were then
estimated as the “standard deviation of the 1000 perturbed Rrs

retrievals in each band.” This derived uncertainty was interpreted
“as the precision of the Rrs retrieval due to instrument noise.” It
was about 4 times smaller than the observed Rrs uncertainties
based on in situ validation (Moore et al., 2015).

Furthermore, in the study by Herrera-Estrella et al. (2021),
a model was developed to evaluate the spectral composition of
Rrs uncertainties, which was applied to characterize
uncertainties due to the Rrs spatial distribution in images
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
sensor on the SNPP platform and the Landsat-8 Operational
Land Imager (OLI) at different spatial resolutions. Most of
these uncertainties were attributed to the surface effects and
water variability conditions.
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In this work, a similar model is applied to estimate the spectral
components of the uncertainties in Rrs retrieval by comparing
SNPP VIIRS satellite data and in situ data from the MOBY site
and eight AERONET-OC stations in US and European waters.

In Theoretical Considerations in the Estimation of
Uncertainties, the model (Herrera-Estrella et al., 2021) is
replicated with several modifications, in VIIRS Satellite and
AERONET-OC, data satellite and in situ data are described,
and the results are presented in Results. Discussion and
conclusions are provided in Discussion and Conclusion.

THEORETICAL CONSIDERATIONS IN THE
ESTIMATION OF UNCERTAINTIES

Main Relationships
The main radiometric quantity in the processing of satellite data
is the remote sensing reflectance, Rrs, which is defined as the ratio
of the water-leaving radiance to the downwelling irradiance at the
sea surface, Rrs(λ) � Lw(λ)/Ed(λ), where Lw(λ) is the water-
leaving radiance, Ed(λ) is the downwelling irradiance, and λ is the
wavelength. At the top of the atmosphere (TOA), the total
radiance, L0t(λ), can be represented as (Gordon and Wang,
1994; Mobley, 2022)

L0
t (λ) � L0

r(λ) + L0
a(λ) + L0

g(λ) + t0(λ)L0
w(λ), (1a)

where L0r(λ) is the total Rayleigh radiance at the TOA, which
includes Rayleigh scattering and surface effects, L0a(λ) is the total
aerosol radiance, L0g(λ) is the direct sun glint radiance from the
water surface at TOA, L0w(λ) is the water-leaving radiance just
above the surface, and t0(λ) is the diffuse transmittance of light
from the water surface to the TOA in the viewing direction.
Superscript “0” denotes the actual parameters in the water and
atmosphere. Lt(λ), measured at the satellite sensor at 3 × 3 or
more pixels, has uncertainties due to all of these components and
to vicarious calibration and sensor noise. In the process of
retrieval of the water-leaving radiance Lr(λ), La(λ), Lg(λ) ,
and t(λ) are modeled, and radiances are subtracted from the
measured radiance, Lt(λ), which introduces another set of
uncertainties between actual and modeled radiances and
transmittance coefficients:

Lw(λ) � (Lt(λ) − Lr(λ) − La(λ) − Lg(λ))/t(λ), (1b)
where radiances Lr(λ), La(λ), Lg(λ) , and Lw(λ) are modeled
radiances.

In addition, L0r(λ) and Lr(λ) can be divided into the radiance
from the Rayleigh scattering in the atmosphere and reflectance
from the ocean surface:

L0
r(λ) � L0

R(λ) + t(λ)L0
surf (λ), (2a)

Lr(λ) � LR(λ) + t(λ)Lsurf (λ), (2b)
where Lsurf(λ) � Lsky(λ)pρ, Lsky(λ) is the sky radiance, and ρ is
the reflectance coefficient from the water surface; this is similar
for L0surf(λ). In the satellite atmospheric correction procedure,
averaged surface effects are considered in the vector radiative

transfer (VRT) equations which are based on Cox–Munk
distributions (Gordon and Wang, 1992; Cox and Munk, 1954;
Hu and Carder, 2002) together with the Rayleigh scattering, and
thus, Lr(λ) in Eq. 1 is not separated into its components. In this
work, one of the goals is to estimate separately uncertainties from
the Rayleigh scattering and surface effects, and that is why both
components are considered separately, and a very small term of
Rayleigh–surface interactions is not considered. In the
atmospheric correction procedure, surface effects are also
included in a similar manner in the modeling of aerosol La(λ)
radiance (Gordon and Wang, 1992). Here, such effects are not
considered separately as well. Regarding the VRT estimation of
surface effects, each satellite image captures a specific snapshot of
the ocean, where the actual spatial average of the light field
reflected from the wave facets may not exactly match the
average predicted by the VRT model. The actual signal may
have its own features due to the instantaneous water and
atmospheric conditions, spatial scales in the area, or due to
simplifying assumptions made within the VRT model, as the
Cox–Munk model is not necessarily valid for waters in
coastal areas.

Then, from Eqs 1, 2 for Lw(λ) assuming t(λ) � t0(λ),
Lw � (Lt − L0

t + L0
R − LR + L0

a − La + L0
g − Lg)/t + L0

surf − Lsurf

+ L0
w.

(3)
Uncertainties from all the components included in Eqs 1–3 in

the recording of the signal and in the retrieval process need to be
taken into account. Normalizing by the downwelling irradiance,
Ed(λ), the uncertainty in remote sensing reflectance σ in sr−1 can
be determined from

σ2 � (σ2
t + σ2

R + σ2
a + σ2

g)/ t2 + σ2
surf + σ2

water + σ2
noise. (4)

Variances for the quantities at TOA σ2t , σ
2
R, σ

2
a, and σ2g are

divided by t2 in accordance with Eqs 1, 2; σ2noise includes 1/t
2 in its

definition (Qi et al., 2017) and characterizes the impact of sensor
noise, which affects Lt(λ) and through it Rrs(λ). In this work, the
transmittance coefficient spectrum is considered not to be
dependent on the aerosol optical thickness τa(λ), as this
dependence is usually small (Wang, 1999). A possible small
variability of the Rayleigh optical thickness values, τR(λ),
which is discussed as a result of this work, is also not
considered in the transmittance coefficient. Following Eq. 3,
σ2R, σ

2
a, σ

2
g, and σ2surf contain uncertainties due to both natural

variability inside the set of pixels and uncertainties due to
inaccuracies of modeling, while σ2t is at least partially due to
the vicarious calibration. It can also include other systematic
errors due to detectors, polarization effects, and stray light, but
these errors are not included in the model.

It was shown in the study by Herrera-Estrella et al. (2021) that
estimated σnoise for the VIIRS sensor (Qi, et al., 2017; Xiong, et al.,
2020) is significantly smaller than the total uncertainties σ(λ)
(Moore et al., 2015). With the representation of data averaged
over 3 × 3, 5 × 5, and 7 × 7 pixels considered in this article, noise
contribution is further reduced in a way that is inversely
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proportional to the square root of the number of pixels, in these
cases, by 3, 5, and 7 times, respectively, and was therefore not
considered further.

All other standard deviation components in Eq. 4, except σt, as
a first approximation, were considered proportional to the
corresponding mean values of the normalized radiances with k
as proportionality coefficients:

σ2 � (σ2
vc + (kRLR/Ed)2 + (kaLa/Ed)2 + (kgLg/Ed)2)/t2

+ (kSSpρ)2 + (kRrsRrs)2, (5)
where σvc(λ) � σgains(λ)Lt(λ)/Ed(λ), σgains(λ) is the standard
deviation of gains (unitless) for the VIIRS fromNASA processing.

LR(λ) � F0(λ)τR(λ)p0.75p 1 + cos2Θ
4π cos θ

, (6a)

La(λ) � ω0(λ)F0(λ)τa(λ)Pa

4π cos θ
, (6b)

Lg(λ) � F0(λ)T0(λ)T(λ)p0.005, (6c)
Ed(λ) � F0(λ)t0(λ) cos θ0, (6d)

Lsurf (λ) � ρLsky(λ); S(λ) � Lsky(λ)
Ed(λ) . (6e)

In Eq. 6a, F0(λ) is the extraterrestrial irradiance, θ is the
sensor zenith angle, and Θ is the scattering angle, the angle
between the solar and viewing directions; in Eq. 6b, ω0(λ) is the
single scattering albedo and Pa is the scattering function for
aerosols; in Eq. 6c, T0(λ) and T(λ) are the direct transmittance
coefficients for TOA to surface and surface to TOA, respectively,
and 0.005 is the threshold for glint detection LGN, in sr−1 (Wang
and Bailey, 2001); in Eq. 6d, θ0 and t0(λ) are the Sun zenith angle
and the corresponding diffuse transmittance, respectively; and in
Eq. 6e, a representative normalized sky reflectance, S � Lsky/Ed,
was simulated by the VRT RayXP code (Tynes et al., 2001) for the
Sun zenith angle θ0 � 42° at a viewing zenith angle of 40°, with
τa(443) and Angstrom coefficient average values for each specific
area based on the numbers from the satellite processing given
below in Table 2. While the sky radiance, Lsky, differs from scene
to scene, the normalized sky radiance, Lsky/Ed, has much less
variability; reflectance coefficient was considered as ρ = 0.025,
which is the typical reflectance coefficient at 40° viewing angle.
Water component σwater was expressed directly proportional to
the remote sensing reflectance, Rrs, recalling its definition as
Rrs(λ) � Lw/Ed.

The uncertainty due to the aerosol component was estimated
in two ways, both based on aerosol radiance. The first way is
analogous to that of the other radiance components, using
normalized radiance with a proportionality coefficient
(kaLa/Ed) and La(λ) determined from Eq. 6b with ω0 � 1 for
all wavelengths, with aerosol optical thickness values and the
Angstrom coefficient derived from the satellite imagery and with
the phase function (PF) assumed equal to 0.3 corresponding to
the scattering angle around 120°. The second technique used the
AERONET data, with the differences between satellite and in situ
radiances calculated as differences between the aerosol radiances
for the VIIRS from NASA SeaDAS processing software package

and radiances calculated from Eq. 6b, where ω0 spectra, aerosol
optical thicknesses, Angstrom coefficient, and phase function
(PF) values were all derived from the AERONET data. The
representative term ΔLa(λ) was determined as

ΔLa(λ) �
������������������∑N

i�1(Li
aSeaDAS

− Li
amodel

)2
N

√
, (7)

with σa � (kaΔLa/Ed) and N being the number of available
measurements. The Rayleigh–aerosol interactions were not
considered in the model since VRT simulations showed their
potential contributions to be very small, 2-5% of the total
uncertainties due to aerosol radiances.

Eq. 5 includes VIIRS vicarious calibration uncertainties, where
sensor gains are determined by the comparison of the water-
leaving radiance from VIIRS after atmospheric correction with in
situ measurements at theMOBY site (Franz et al., 2007). σgains(λ)
is included as a constant spectrum with values σgains(λ) �
[0.01220, 0.01125, 0.01157, 0.00904, 0.00580] for the
corresponding wavelengths 410, 443, 489, 551, and 671 nm,
respectively. Data processing was carried out first without
σvc(λ) in Eq. 5 to understand the contributions of other
components to the total σ (λ) and then with σvc(λ) included.

For each available matchup between the satellite and
AERONET-OC measurements, all radiance spectra in Eqs
6a–d were calculated, then spectra were averaged over the
total number of available measurements. Mean spectra were
then used in the fitting procedure based on Eq. 5, together
with Lsurf(λ) calculated based on the spectrum of the sky
radiance, S(λ), for each station. There are 5 bands on the
VIIRS sensor, and there are 5 unknown k coefficients in Eq. 5,
which are determined from the fitting procedure, and which
define the contribution of each term to the total uncertainty.

It should be emphasized that the spectral shapes of the main
components in Eqs 6a–e are of primary interest: changes in
values, which were assumed constant in the model, do not affect
these shapes nor the contribution of the corresponding
uncertainties from these components to the total, σ2(λ); only
the values of the coefficients k will be affected.

σ(λ) was calculated from the comparison of the VIIRS data
with the corresponding AERONET-OC station data in all the
bands and in four wind speed W brackets (W < 3 m/s, 3 < W <
5 m/s, W>5 m/s, and all wind speeds together) as

RMSD �
�����������������∑N

i�1(Ri
rssat

− Ri
rsin−situ)2

N

√
, (8)

with σ(λ) � RMSD.
Biases were also calculated as

bias � ∑N
i�1(Ri

rssat
− Ri

rsin−situ)
N

. (9)

Following Eqs 5, 6, coefficients of variation (CVs) can be
further determined by normalizing the σ(λ) components
by R2

rs(λ)
CV2 � (CV2

R + CV2
a + CV2

g)/t2 + CV2
surf + k2Rrs, (10)
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where the total CV on the left side represents σ(λ)/Rrs(λ) .

Optimization Procedure
With all σ(λ) components calculated for a scene, a non-linear
least-squares fit optimization was carried out in the MATLAB
using the default trust-region-reflective algorithm (Coleman
and Li, 1994; Coleman and Li, 1996) to determine the
respective values of the k coefficients for MOBY and each
AERONET-OC site based on the spectra of the σ(λ)
components and their individual contribution to the total
observed Rrs variance, σ2(λ), as described in Eq. 5. For each set
of the components (defined by a specific site, pixel averaging
resolution, and wind speed bracket, for a total of 120 sets), a
corresponding set of k coefficients was determined based on
VIIRS spectra from 5 bands, that is, 410, 443, 489, 551, and
671 nm. To do so, the components in each set as well as the
total observed uncertainty were all normalized to 1 with a
simple division by their maximum value across the available
spectrum. The normalized spectra were then fed to the
optimization algorithm, which was run 100 times for each
set to test the robustness of the solution against the possible
local minima. For every run, a new randomized set of initial
conditions was employed, and the normalized k coefficients
were then let to vary between an upper bound of 1 and a lower
bound of 0.02, to encourage the avoidance of non-physical
solutions. The robustness of each solution was evaluated by
the ratio of the standard deviation to the mean of the
normalized k coefficients across all 100 outputs, with the
mean being used as the final value of the coefficients. For
all 5 k coefficients within each set, and across all 120 sets in the
dataset, the median of the ratio was found to be of the order of
10–6 or smaller, and its maximum to be of the order of 10–3 or
smaller, saved for one single set out of 120, where the ratio
corresponding to the Rayleigh k coefficient was of the order of
10–1. Overall, these statistics indicate strong convergence in
the optimization results. No further constraints were applied
to the possible solutions, and in particular, no expectations in
terms of typical relative magnitudes of the components were
used to direct the algorithm, in accordance with the
exploratory nature of our study. Once a solution was
reached, all normalized k coefficients were then scaled back
to their true scale values, using the formula

ki�
mσ

~ki~σ i, max

σ i, max
, (11)

where ki are the true scale k coefficients, index i represents the various
components, mσ is the normalization coefficient of the total
uncertainty σ(λ), ~ki are the normalized k coefficients determined
by the optimization, and ~σ i, max and σ i, max are the spectral maxima
of the normalized and true scale versions of the ith σ(λ) component,
respectively.

These coefficients, once used to scale their corresponding
radiance components, were interpreted as an indication of the
major contributing components to the total observed Rrs variance
σ2(λ).

VISIBLE INFRARED IMAGING
RADIOMETER SUITE SATELLITE AND
AERONET-OC DATA
VIIRS Data
Satellite imagery was downloaded for the period from January
2012 to October 2021 for the area of the Marine Optical BuoY
(MOBY) in Hawaii and eight Aerosol Robotic Network for Ocean
Color (AERONET-OC) sites (Figure 1): the University of South
California (USC), Venise, Gloria, the Martha’s Vineyard Coastal
Observatory (MVCO), COVE, WaveCIS, the Long Island Sound
Coastal Observatory (LISCO), and the Helsinki
Lighthouse (HLT).

VIIRS’s Satellite Level 2 imagery, version 2018.0, was
downloaded from the NASA Ocean Color website https://
oceancolor.gsfc.nasa.gov (Gordon and Wang 1994; Siegel et al.,
2000; Bailey et al., 2010). Standard NASA Level 2 data files for the
VIIRS include geophysical products of the atmosphere and ocean,
such as aerosol optical thickness, remote sensing reflectance,
Rrs(λ), in the visible wavelengths 410, 443, 486, 551, and
671 nm, and the level 2 quality flags. However, Sun zenith
angle, sensor viewing angle, sensor azimuth angle, scattering
angle, total radiance, and aerosol radiance are obtained from
SeaDAS version 7.5.3 after processing VIIRS’s Satellite Level 1A
imagery for those files that passed the matchup selection.

Pixels flagged by at least one of the following conditions were
excluded: land, cloud, failure in the atmospheric correction, stray
light (except for LISCO), bad navigation quality, high or
moderate glint, negative Rayleigh-corrected radiance, negative
water-leaving radiance, viewing angle larger than 60°, and solar
zenith angle larger than 70°.

The VIIRS’s pixel resolution for the reflectance bands at nadir
is 750 m. A file is selected if at least half of the pixels in the set plus
one was flag-free. Pixels used for matchup comparison were
averaged over 3 spatial resolutions: 2250, 3750, and 5250 m (3
× 3, 5 × 5, and 7 × 7 pixel boxes), centered at the AERONET site
(Hlaing et al., 2013). Average Rrs(λ) and the standard deviation
among pixels, geometry, and radiance were recorded.

In addition, aerosol radiances were also downloaded from
SeaDAS for the comparison with aerosol radiances simulated
based on parameters from AERONET-OC sites.

FIGURE 1 | Areas of study: global map showing the MOBY area and all
the AERONET-OC stations.
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AERONET-OC Data
The ocean color component of the Aerosol Robotic Network
(AERONET-OC) was implemented to support long-term ocean
color investigations by collecting normalized water-leaving
radiance and aerosol optical depth data using the SeaPRISM
autonomous radiometer systems deployed on offshore fixed
platforms (Zibordi et al., 2009; Zibordi et al., 2020). The
SeaPRISM system is a CIMEL Electronique CE-318/CE-318T
sunphotometer, used to retrieve atmospheric optical thickness
and other atmospheric parameters, and modified to perform
radiance measurements with a full-angle field of view of 1.2°

to determine the total radiance from the sea surface, LAt (λ), and
the sky radiance, LAsky(λ), as a function of solar zenith angle,
sensor viewing angle, and relative azimuth with respect to the sun
(Zibordi et al., 2009). From these, the normalized water-leaving
radiance, LAw(λ), and the remote sensing reflectance were
determined. The wavelengths of the visible spectrum used in
this analysis are 412, 443, 488, 551, and 667 nm from CE-318.

The aerosol optical depth, aerosol inversions, and ocean color
data used in this analysis are version 3 level 1.5 data, which has
been cloud-screened and quality-controlled to ensure the
accuracy of the data. All matchups were observed within a
±2 h window between the satellite overpass and in situ
observation (Zibordi et al., 2009; Zibordi et al., 2020). The
spectrum was classified as coastal water if Rrs (412) ≤ 0.006,
and as open ocean water if Rrs (412) > 0.006. More detailed
information on AERONET-OC sites is listed in Table 1. At the
Venise site, there were a large number of observations with both
Rrs (412) ≤ 0.006 and Rrs (412) > 0.006, and they are presented
separately. Due to the site location, Venise waters with Rrs (412) >
0.006 are far from clear sea waters, but the term remained to
formally separate different types of the spectra. At a few other
sites, there were a small number of spectra with Rrs (412) > 0.006;
these were not considered because there were not enough data for
reliable averaging and fitting procedures.

The quality of Rrs(λ) data depends on the wind speed (Zibordi
et al., 2009; Zibordi et al., 2020). Due to the accepted algorithm to
minimize the impact of Sun glint on the measurements of the
total above water radiance, which takes into account the lowest
two out of 11 measurements, with increasing wind speeds above
5 m/s, water-leaving radiance becomes slightly lower. As can be
seen in the following text, for several stations, that increased σ(λ)
for wind speed W>5 m/s and affected the bias in Rrs(λ), but there
were exceptions from this trend, and this effect did not

significantly change the whole picture of the uncertainties’
composition. Consequently, the results are presented mostly
for the data averaged over all wind speed ranges; a few details
are further discussed in the following section.

Marine Optical BuoY Data
Marine Optical BuoY (MOBY) radiometry data are used by the
NASA-OBPG as part of ocean color validation and vicarious
calibration activities (Clark et al., 1997). MOBY is an autonomous
anchored buoy offshore of Lanai, Hawaii. On each day of
deployment, it collects several measurements of upwelling
radiance from sensors on its underwater arms (at
approximately 1, 5, and 9 m depth) and downwelling
irradiance from sensors on its underwater arms as well as at
the surface (Voss et al., 2017).

From the MOBY “gold” directory, the MOBY data that
matched the bands from the VIIRS were collected when the
existing data were matched up with ±2 h of the satellite overpass.

The main atmospheric parameters at the studied sites
determined from the AC processing and AERONET retrievals
are provided in Table 2. Absorbing aerosols were noticeable at
several sites with the average ω0 values even below 0.9 at LISCO,
but the spectral dependence of ω0 was small.

RESULTS

Mean Rrs(λ) spectra from the MOBY site and eight AERONET-
OC stations are shown in Figure 2A. They represent water areas
from very clear (MOBY and USC), moderate coastal (Venise,
Gloria, MVCO, WaveCIS, and COVE), and very coastal (LISCO
and HLT) waters with Rrs(λ) standard deviations shown in
Figure 2B. Corresponding σ(λ) spectra are shown in
Figure 2C. They have different shapes with the highest values
in the blue, which likely suggests the presence of both different
and common spectral components in these total spectra.

First, the results of processing Eq. 5 without the σvc(λ)
term are reported. As explained previously, the fitting
procedure included the sum of all the spectral components
in Eq. 5 with the corresponding coefficients k. Typical spectra
for all the components involved, normalized to their maxima,
are shown for the open ocean and coastal water stations in
Figure 3. In accordance with Eq. 4, σR, σa, and σg are divided
by the spectrum of the diffuse transmittance t for the

TABLE 1 | Location and parameters of the AERONET-OC sites.

Station name Location Distance to
shore (km)

Latitude (°)/longitude
(°)

Database Height above
water (m)

USC SeaPRISM Near Newport Beach, CA, United States 18.00 N 33.564/W 118.118 2011–on going 31.0
Venise Venice Lagoon, Italy 14.82 N 45.314/E 12.508 2002–on going 10.0
Gloria Near Constanta, Romania 22.22 N 44.599/E 29.360 2011–2019 30.0
MVCO Near South Beach, Edgartown, MA, USA 5.00 N 41.300/W 70.550 2004–on going 10.0
WaveCIS Site CSI 6 Timbalier Bay area, MS, United States 18.00 N 28.867/W 90.483 2010–on going 32.7
Cove SeaPRISM Near Virginia Beach, VA, United States 25.00 N 36.900/W 75.710 2005–2016 24.0
LISCO Long Island Sound near Northport, NY, United States 3.00 N 40.955/W 73.342 2009–on going 12.0
Helsinki Lighthouse (LT) Gulf of Finland 27.78 N 59.949/E 24.926 2006–on going 20.0
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TABLE 2 | Average atmospheric parameters at the sites of the study determined from satellite and AERONET retrievals.

Site N Satellite AERONET

τa
(443)

STDa

τa
(443)

Angstrom STDa

Angstrom
τa

(443)
STDa

τa
(443)

Angstrom STDa

Angstrom
ω0

(443)
ω0

(671)

MOBY 307 0.1106 0.0564 0.8382 0.4277 — — — — — —

USC 424 0.1149 0.0531 1.0755 0.3726 0.0867 0.0492 0.9619 0.35 0.919 0.9047
Venise 568 0.1737 0.0894 1.3601 0.3896 0.153 0.0981 1.5 0.3131 0.9639 0.9534
Gloria 127 0.1645 0.0771 1.3323 0.0346 0.1404 0.7755 1.6025 0.2967 0.9658 0.956
MVCO 106 0.1216 0.0654 1.2681 0.4105 0.1016 0.0752 1.2308 0.337 0.9591 0.9455
WaveCIS 178 0.1075 0.0534 1.1877 0.4506 0.0743 0.0495 1.2992 0.7738 0.9678 0.9619
Cove 37 0.0756 0.0304 1.107 0.3438 0.0643 0.0336 1.5003 0.3375 0.9663 0.9525
LISCO 264 0.115 0.0707 1.0068 0.4373 0.0857 0.0776 1.4415 0.4006 0.8809 0.8697
Helsinki Lighthouse 153 0.143 0.063 1.3932 0.332 0.1151 0.0678 1.3449 0.3138 0.9357 0.9146

aSTD is the standard deviation of the corresponding parameter.

FIGURE 2 | (A)Mean Rrs (λ) spectra from the AERONET-OC, (B) standard deviations of Rrs (λ), and (C) corresponding uncertainties spectra σ(λ) for all the areas
of study.

FIGURE 3 | Normalized spectra for the MOBY, USC, Venise, and LISCO sites (3 × 3 pixels, 2250 m resolution).
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propagation of light from the surface to TOA. The normalized
spectra for the Rayleigh scattering and glint are the same for
all the stations, and the spectra for the total σ(λ), for aerosols,
surface effects, and Rrs(λ) components are different. The
Rayleigh scattering and surface effects spectra are both

related to the sky spectra, but the former is divided by the
spectrum of the diffuse transmittance t and the latter was
simulated based on the composition of the Rayleigh and
aerosol scattering, which makes these spectra distinct from
each other.

FIGURE 4 | Results of fitting for all areas of the study. σ(λ) was considered proportional to the aerosol radiance spectra from Eq. 6b.

FIGURE 5 | Results of fitting for all areas of the study. σ(λ) was considered proportional to the differences between the aerosol radiances from the SeaDAS and
AERONET-OC sites (except for the MOBY site).
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Results of the fitting are presented in Figure 4 for the case
when σa(λ) was considered proportional to the aerosol radiance
spectra from Eq. 6b, and in Figure 5 for the case when σa(λ) was
considered proportional to the difference of aerosol radiances
ΔLa(λ) from SeaDAS and in situ (normalized by the downwelling
irradiance). It was found that this normalized difference was
about 5 times greater than the total σ(λ), meaning that this
difference does not fully represent uncertainties in aerosol
radiances in the atmospheric correction process, so the
coefficient ka was allowed to vary in a wide range. Note that
the smaller number of measurements included in the averaging in
Figure 5 in comparison with Figure 4 was due to the
unavailability of some atmospheric parameters necessary to
model aerosol radiances based on in situ data.

While there are some differences in the spectral components
for these two cases, the main results remain the same. The main
uncertainty for all the areas of AERONET-OC stations from clear
waters to very coastal comes from the Rayleigh component, which
is typically assumed to be well defined in the atmospheric
correction process (Mobley et al., 2016) and to be pre-
calculated in a very accurate manner. The presence of the
strong Rayleigh component in the total σ(λ) budget explains
well the maximum of uncertainties in the blue part of the
spectrum. For most cases, the maximum of σR in the blue part
is in a relative narrow range of 0.8–1.4 × 10–3 sr−1, leading to the
conjecture that it is related to the specific physical effect.

The second major impact on the total σ(λ) comes from the
σwater term, which is due to the variability of water parameters
spectrally proportional to Rrs(λ), and this brings a significant
difference in the spectral shape of the total σ(λ) depending on the
site and the water type; surface effects σsurface are also noticeable
at some stations. The contribution of the aerosol uncertainty
component was found to be virtually null at almost all sites
despite the fact that all data were used in the processing, including
outliers such as Rrs(λ) spectra with negative values at 412 nm. It
should be reminded that the fitting procedures were carried out
with radiances corresponding to the mean values for each station
in Table 2, where all τa(443) are below 0.2, which does not
exclude higher contribution of aerosol radiance uncertainties in
specific cases with higher τa(443) values. It should also be noted
that in Figures 4, 5, standard deviations are presented, while the
fitting process is carried out in variances, so small differences in
the values of spectral components in Figures 4, 5 are amplified in
the fitting procedure. From this point of view, the contribution of
glint to the total σ(λ) is mostly small in comparison with that of
other components previously discussed. As previously
mentioned, there was no filtering of any individual spectra of
uncertainties, which contributed to σ(λ) in Eq. 8 as long as all the
necessary data were available; that includes outliers, which
induced sharp features in some of the σ(λ) spectra (WaveCIS,
Gloria) and resulted in worse fitting results than for other
stations.

Another important thing to be noted is that the optimization
algorithm cannot easily distinguish between the components with
a similar spectral behavior, particularly in the case of Rayleigh
scattering and surface effects, and, to a lesser degree, aerosol
scattering (cf. Figure 3). By the very definition of optimization,

the procedure maximizes the efficiency in reconstructing the total
uncertainty, which may include the singular utilization of one
component at the expense of all others. This too may explain the
general small contribution of the aerosol component, as well as
sudden switches between the Rayleigh scattering and surface
contributions like in the case of the WaveCIS site when the
formulation of ΔLa(λ) as the difference between SeaDAS and in
situ values is used (Figure 5). Nevertheless, while possibly falling
short of offering a true estimation of the real relative magnitudes
of the individual contributions to σ(λ), the consistent
identification of the Rayleigh scattering as the component best
capable of explaining σ(λ) in the 400–500 nm range appears
strongly suggestive of a much more critical role for this
contribution than usually assumed in the literature.

The spectral composition of σ(λ) at the MOBY site is different
from the composition at AERONET-OC sites. The vicarious
calibration of VIIRS and other NASA OC sensors is carried
out at this site, meaning that all differences between the
atmospherically corrected water-leaving radiance spectra and
measured by MOBY are corrected by the calibration gains.
Nevertheless, a strong Rayleigh component also exists in the
uncertainty budget at this site.

As was shown before (Herrera- Estrella et al., 2021), there is
almost no spatial variability of water measured by Rrs(λ) in the
MOBY area. However, the second main spectral component in
σ(λ) at the MOBY site is the spectrum proportional to Rrs(λ),
which is probably due to the temporal variability of the water
parameters at this site. Inaccuracy of the radiances in the
atmospheric correction at the MOBY site is most likely
compensated by the τa(λ) values, which are usually higher
than expected from field measurements.

FIGURE 6 | Biases of Rrs(λ) in areas of study; dashed line is the
mean bias.
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FIGURE 7 | Separation of the fitting results by the wind speed, Venise, and LISCO sites: Venise (top row), LISCO (middle row), σ(λ) and bias for Venise and LISCO
(bottom row). The last graph in the first and second rows represents data averaged over all wind speed intervals.
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Spectral biases of Rrs(λ) at all the sites are shown in Figure 6,
with the global mean bias shown as a dashed line. This was
calculated from all spectra excluding the ones for the MOBY site
and from the LISCO site since the stray light flag was suspended
for LISCO. This bias spectrum resembles the bias at the MOBY
site, which will be smaller in the blue bands if the mean bias is
subtracted. Bias at MOBY was already reduced in the VIIRS
reprocessing 2018 in comparison with 2014 reprocessing (Franz
et al., 2018), which improved the quality of NASA products.

As was mentioned before, the results of the fitting were slightly
different for different wind speed brackets. These differences are
demonstrated in Figure 7 where fitting results are presented for
Venise and LISCO sites for three wind speed intervals as well as
averaged over all cases.

Surface effects were small at 3 < W ≤5 m/s and more
noticeable at W > 5 m/s. This pattern was typical for most of
the AERONET-OC sites. Some presence of the surface effects at
low wind speeds W < 3 m/s is probably associated with the
specifics of processing of the SeaPRISM data and/or accuracy of
Cox–Munk surface slopes model (Cox and Munk, 1954) for the
coastal sites in the satellite data processing. The uncertainty of the
Rayleigh component is the highest in most cases, especially in the
blue part of the spectra followed by water variability components
and sometimes surface effects. σ(λ) is higher at high wind speed
W > 5 m/s for both stations, which can be partially due to the
AERONET-OC processing algorithm also pushing biases’ spectra
slightly higher for this wind speed range.

Fitting coefficients k from Eq. 5 for all stations are provided in
Figure 8 as a function of the spatial resolution based on 3 × 3, 5 ×
5, and 7 × 7 pixel processing by the model. There are no
significant changes in the coefficients with an increase of the

averaged area. The coefficients have different ranges of values for
different parameters: they are smaller for Lr and Lg, which are
measured at the TOA level, and greater for surface effects and water
variability, which at the surface level have radiances about 10 times
smaller than Lr. The ka coefficients are shown for two different
processing schemes, and the other coefficients for these two schemes
remained in the same range. The kR coefficient related to the Rayleigh
uncertainties is grouped in a very small range around 0.015, meaning
that it is related to a specific effect common to all the stations, which
further inspired processing with all terms in Eq. 5 including σvc(λ).
The ranges of the ka coefficient related to aerosols are slightly
different for the two processing schemes because of different
aerosol radiances represented in the fitting process and mostly
represent a small contribution of the aerosol component as is seen
in Figures 4, 5. kg varied in a broad range but as is seen in Figure 4,
the contribution of glint effects was not significant at all the studied
sites. Surface effects, characterized by the kS coefficient, were
noticeable at many stations but with mostly small contribution:
the highest value was found at the WaveCIS site in the second
processing case (Figure 5, bottom row). For this station, the
optimized solution surface effects probably replaced the Rayleigh
component, which was dominant in the first processing case
(Figure 4, bottom row). kRrs, which is related to water variability,
was small in clear USC waters, about 0.1 at the MOBY site probably
due to temporal variability and varied in a small 0.1–0.3 range at
other sites, typically with a small change in the spatial resolution. The
water variability component was prominent at all the sites and
affected the shape of the uncertainties, as described previously.

Total uncertainties σ(λ) and uncertainties related to the Rrs

spatial variability [defined as σspat(λ) in the study by Herrera-
Estrella et al. (2021)] are well spectrally correlated in the open

FIGURE 8 | k coefficients vs. resolution for all the stations.
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ocean (R2 = 0.95–0.98), almost independently of the number of
pixels averaged. In that study, σspat(λ) was found to be 4–5 times
lower than σ(λ). These uncertainties are much less correlated in
coastal waters with high water variability (typically R2 =
0.70–0.80), and averaging over at least about 50 pixels is
required to reach this R2 level as the components are not
directly related to the spatial variability to gradually propagate
to σspat(λ) statistics.

The results of data processing with σvc(λ) included are further
reported and discussed in the following. Normalized spectra for
all the components are shown in Figure 9 similar to Figure 3 for
the case without σvc(λ). It can be seen that at almost at all sites,
σvc(λ) and the Rayleigh scattering spectra are very similar.

The results of fitting with the inclusion of σvc(λ) for the case
where σa(λ) is considered proportional to the difference ΔLa(λ)
of SeaDAS, and in situ aerosol radiances (normalized by the
downwelling irradiance) are shown in Figure 10 for all the
stations (similar to Figure 5). The fitting results for the first
processing case (analogous to Figure 4) were less accurate and are
not shown.

Now the main uncertainty for all the AERONET-OC stations
from clear water to very coastal water comes from the σvc(λ)
component, which results from the vicarious calibration of the
sensor at the MOBY site (Franz et al., 2007). This component is
slightly different at different sites because of differences in the
average Lt(λ) and Ed(λ) values used in the transformation of
σgains(λ) to σvc(λ). As aforementioned, the presence of a strong

water variability term and weaker surface effects, aerosol, and
glint components is observed.

CV spectra for all sites are shown in Figure 11 for both in situ
and satellite data, with a typical increase of CV in the blue bands
reaching about 2–2.5 at the very coastal sites where Rrs values are
especially low. As expected, CVs are also high in the red part of
the spectra for the clear water sites like USC because of the low Rrs

values at those wavelengths.
SeaPRISM measurements together with data processing

introduce their own uncertainties, which need to be
considered in the uncertainties’ budget. According to Gergely
and Zibordi (2014), the CV for the Venise site at 412 nm is about
5% and at the Helsinki site is about 27% with the differences
mostly due to the different Rrs values. Considering the Rrs spectra
shown in Figure 2A, this corresponds to σ ≈ 2 × 10−4 sr−1, and
thus makes a small contribution to the total σ. However, if some
method is found to reduce the impact of the Rayleigh component
on the total uncertainties, the contribution can become more
significant.

Distributions of the individual spectra ΔRrs � Ri
rssat − Ri

rsin−situ
for the three stations (USC, Venise, andMVCO) are shown in the
first column of Figure 12. Modified spectra after the removal of
bias are shown in the central column of the same figure,
demonstrating a strong symmetry of the spectra against the
zero line. As a reminder, no outliers were removed at any of
the stations as long as all the necessary data were fully available. In
the third column of Figure 12, histograms of ΔRrs(412)—bias are

FIGURE 9 | Normalized spectra for all sites (3 × 3 pixels, 2250 m resolution) with σvc(λ) included.
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shown, with distributions very close to normal in all the three
cases. A similar effect was noticed in IOCCG (2019) for the
comparison of data from MODIS-Aqua at the Venise site. It was
also mentioned that uncertainties at different wavelengths are
well correlated. All these features are consistent with the presence

of the Rayleigh-type component as the main component in the
total σ(λ).

Finally, the ΔRrs(412) distribution was checked in terms of
correlations with Rrsin−situ(412) for the in situ data. Almost no
correlation (R2 < 0.01) was found, indicating that ΔRrs and total

FIGURE 10 | Results of fitting for all areas of the study with σvc(λ) included: σa(λ) was considered proportional to the differences between the aerosol radiances
from the SeaDAS and AERONET-OC sites (except for the MOBY site).

FIGURE 11 | CV spectra for all sites of the study: the in situ data (left) and the VIIRS data (right).
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σ(λ) are not related to the uncertainties of the in situ
measurements. ΔRrs(412) were instead correlated with Rrssat,
where correlations were up to R2 = 0.93 at the LISCO site.

DISCUSSION AND CONCLUSION

The model developed for the separation of remote sensing
reflectance uncertainties into their spectral components is
applied to the uncertainties’ spectra from the matchups of
satellite and AERONET-OC data and MOBY measurements. It
was shown that the main component in Rrs uncertainties at all the
AERONET-OC sites is the Rayleigh-type component at the level

of (0.8–1.4) ×10–3 sr−1 at 412 nm based on Figure 5, which with
Ed(412) ≈ 100 mWcm−2μm−1sr−1 corresponds to a standard
deviation in radiance of about 0.12 mWcm−2μm−1sr−1. This
uncertainty for Lt(412) � 8–10 mWcm−2μm−1sr−1 is about
±1.2–1.5% of the total TOA radiance. The contribution of this
component to total uncertainties is not constant, and the simple
inclusion of σvc(λ) does not account for the full range of
uncertainties as is shown in Figure 10. This component is
different at different stations.

A comparison of σgains(λ) applied to the MOBY conditions
from different satellite sensors: SeaWIFS, MODIS (Moore et al.,
2015), Sentinel 3A OLCI (Lamquin et al., 2017), and VIIRS
(NASA data) show significant similarity of these spectra, as

FIGURE 12 | Analysis of the ΔRrs distribution for MVCO, USC, and Venise sites. First column: all ΔRrs, second column: all ΔRrs—mean bias for the station, third
column: histogram of all ΔRrs—mean bias for the station at 412 nm.
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demonstrated in Figure 13. It is unlikely that such similarity
would exist for different sensors with different designs if σgains(λ)
were due to an imperfect sensing process. It is more likely that this
variability is due to the variability in the atmosphere, with the
main variability due to Rayleigh scattering.With σgains(λ) applied
not to Lr(λ) but to Lt(λ) at the MOBY site, these σgains(λ) cannot

be directly applied to other stations with different contributions
of Lr(λ) to Lt(λ), primarily due to the different Lw(λ) component
at MOBY and other areas, as is visible in Figures 9, 10.

The main parameter in Lr(λ) that can force Lr(λ) to fluctuate in
this manner is the Rayleigh optical thickness τR(λ). In the current
atmospheric correction processing, τR(λ) is calculated based on the
study by Bodhaine et al. (1999). Several approaches in the calculation
of τR(λ)were considered earlier (Teillet, 1990) with the differences of
a few percent. Moreover, the natural variability of τR(λ) can be
imagined due to the variability of the concentrations of the main
gaseous components and their vertical distribution, as well as
differences between the actual and estimated pressure and
temperature values, that are each typically on the order of
0.2–0.3% of their actual values (Smith et al., 2001). This looks
consistent with the close to normal distribution of ΔRrs in
Figure 12. The standard deviation of τR(λ), which may be
considered as a measure of this variability, is about 1.5% of
τR(λ), assuming Lr(412) ≈ 6.0 mWcm−2μm−1sr−1 and
transmittance coefficient t(412) � 0.8. Rayleigh component
uncertainties can also come from the interaction in the scattering
process of molecules and aerosols. However, as previously
mentioned, this impact should be small.

Variability of Lr(λ) due to the changes in τR(λ) has a direct
impact on the atmospheric correction. While the changes are too
small in the NIR to affect the selection of aerosol models (Wang
and Gordon, 2002), changes of τR(λ) in the blue part of the
spectrum are stronger than the effect of absorbing aerosols. Since

FIGURE 13 | Comparison of σvc(λ) for different satellite sensors.

FIGURE 14 | Time series of ΔRrs(412) for the areas of the study.
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the Rayleigh component is pre-calculated, negative changes in the
actual Rayleigh contribution will result in overcorrection, and this
effect together with the low Rrs (412) values in coastal waters is
probably the main factor that creates negative Rrs (412) in the
atmospheric correction processing. In the study by
Ransibrahmanakul and Stumpf (2006), negative values of Rrs

(412) from SeaWiFS in Long Island Sound are shown to exist
about 50% of the time, which is consistent with the probability of
negative changes in the Rayleigh component but not with the
frequency of very strong absorbing aerosols in the region. A
power law-like artifact with exponent −6 was identified and
corrected in Rrs (λ) in that work to eliminate an impact of
negative Rrs (λ). Based on ω0 values in Table 2, there are no
spectral changes of ω0 that can create a spectral component of Rrs

error with power −6, but it was observed that uncertainties due to
the Rayleigh component with power ~ −4.5 (Rayleigh spectra
divided by the diffuse transmittance) give similar results.

Thus, negative values of the Rayleigh component uncertainty,
possibly together with the effect of absorbing aerosols at low
actual Rrs (412) values, create negative Rrs (412) in the
atmospheric correction processing. Similar effects with both
positive and negative uncertainties most likely exist at higher
Rrs (412) as well, inducing variability in Rrs (λ), but they are not
explicitly visible as errors. They can just slightly affect the
estimation of chlorophyll concentrations and water inherent
optical properties.

The time series of ΔRrs(412), which is in accordance with the
abovementioned results can be considered as a proxy to the time series
of τR(412) for the studied sites, are presented in Figure 14.

It can be seen that ΔRrs(412) uncertainties are not random.
Rather, they represent gradual changes in the atmosphere if the
measurements are close to each other in time, which is consistent
with the assumption that they are mostly due to the changes in the
total air column integrated mostly in the Rayleigh optical thickness,
not in inaccuracies in the atmospheric correction process. Variability
of the Rayleigh component also probably contributes to the recently
reported seasonal bias between satellite observations and
measurements at the MOBY site (Bisson et al., 2021).

It is possible that the methodology applied in this work
underestimates the contribution of aerosols to the total
uncertainties because of the difficulty to determine actual spectra
of aerosol uncertainties and their spectral variability in various
conditions. This contribution should be further analyzed using
different approaches. Part of the uncertainties can come from
inaccuracies in the computations of the Rayleigh and other
components by vector radiative transfer codes. While current
VRT codes calculate the Rayleigh component with uncertainties of
a fraction of a percent (typically below 0.1%) (Kokhanovsky et al.,
2010), related uncertainties should be carefully monitored.

One source of additional uncertainties in ΔRrs(412) was
recently discussed (Gilerson et al., 2018), and it is due to the
combination of the Rayleigh component with surface effects,
which is pre-calculated based on the Fresnel reflectance
coefficient of the sky light reflected from the ocean surface. In
the presence of aerosols in the sky, parameters of which are
determined in the further steps of the atmospheric correction
after the subtraction of the Rayleigh component, the reflectance

coefficient changes. This effect is not accounted for in the
Rayleigh component computations, thus creating circular
relationships, that could lead to the abovementioned uncertainties.
Simple estimations show that Lsky and Lr are of the same order. In
the surface effects, Lsky is multiplied by reflectance coefficient ρ,
which is equal to 0.025–0.030 at viewing angles of 40⁰ and smaller,
and is greater for larger viewing angles so that changes of ρ by
20–30% can account for about 1% of Lr. Similar uncertainties can
appear because of deviations of the wave slopes distribution in coastal
areas from the distribution of Cox and Munk (1954), which leads to
changes in the reflectance coefficient. Surface effects were
pronounced at several stations as can be seen in Figures 4, 5, 10.
Spectral shapes of the Rayleigh component and of surface effects are
close to each other (in the former, the Rayleigh spectra are divided by
the transmittance, and in the latter, sky spectra include small effects of
aerosols), and they can be complementary in the fitting procedure
and thus not well distinguishable from each other.

As mentioned earlier, uncertainties can also include other errors
due to detectors, polarization effects, stray light, etc., and such errors
were not included in the model. Based on the similarity of the spectra
of standard deviations of the vicarious gains from several satellite
sensors shown in Figure 13, the contributions of these effects appear
to be small for these sensors, which does not exclude the possibility
that these terms will be larger for other sensors with different designs
or radiometric performance.

Without the uncertainty due to changes of τR(λ), the total
uncertainty could be reduced by several times, for example, at the
USC site in the blue bands, and to a smaller degree but also
significantly at the other coastal sites. To minimize this
uncertainty, approaches based on the fitting of reflectance spectra
(Steinmetz et al., 2011) should be explored more thoroughly.

Based on the analysis of biases of Rrs in Figure 6, the bias at the
MOBY site is the highest and is positive. At the AERONET-OC
sites, biases are positive at a few stations and negative at a few
others. The reasons for such variability should be further studied.
Biases in the 412–489 nm range can be partially improved by the
slight change of gain values at these wavelengths.

In addition to the MOBY site, the USC site can also be
considered for the vicarious calibration. It has minimal water
variability and provides full information on aerosol parameters.
This information together with the measured water-leaving
radiance can be used for the calibration through the
simulation of the total radiances (Bailey et al., 2010; Hlaing
et al., 2014) in addition to the current approaches of the
vicarious calibration (Franz et al., 2007; Werdell et al., 2007).
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